
Neuro-Evolution Methods for Gathering and
Collective Construction

Geo� Nitschke

Department of Computer Science, University of Pretoria, South Africa
gnitschke@cs.up.co.za

Abstract. This paper evaluates the Collective Neuro-Evolution (CONE)
method, comparative to a related controller design method, in a simu-
lated multi-robot system. CONE solves collective behavior tasks, and in-
creases task performance via facilitating behavioral specialization. Emer-
gent specialization is guided by genotype and behavioral specialization
di�erence metrics that regulate genotype recombination. CONE is com-
paratively evaluated with a similar Neuro-Evolution (NE) method in a
Gathering and Collective Construction (GACC) task. This task requires
a multi-robot system to gather objects of various types and then co-
operatively build a structure from the gathered objects. This collective
behavior task requires that robots adopt complementary and specialized
behaviors in order to solve. Results indicate that CONE is appropriate
for evolving collective behaviors for the GACC task, given that this task
requires behavioral specialization.

1 Introduction
In �elds of research such as multi-robot systems [11], it is desirable to reproduce
the underlying mechanisms that result in replicating the success of biological
collective behavior systems. One such mechanism is emergent behavioral special-
ization [10]. In the study of controller design methods that solve various collective
behavior tasks emergent specialization is not used as a problem solving mecha-
nism, but rather emerges as an ancillary result of the system accomplishing its
given task. Collective behavior tasks are those requiring cooperative behavior.

This paper applies and tests the Collective Neuro-Evolution (CONE) method.
CONE is a novel controller design method that solves collective behavior tasks
via purposefully facilitating emergent behavioral specialization is currently lack-
ing. CONE adapts a set of Arti�cial Neural Network (ANN) controllers for the
purpose of solving collective behavior tasks. The advantage of CONE is that
it increases collective behavior task performance or attains collective behavior
solutions that could not otherwise be attained without specialization.

In line with state of the art methods for controller design [6], this research
supports NE as an appropriate approach for controller design within continu-
ous and partially observable collective behavior task environments. NE has been
successfully applied to solve a disparate range of collective behavior tasks that
include multi-agent computer games [2], pursuit-evasion games [12], and coor-
dinated movement [1]. Such collective behavior tasks require di�erent agents
(controllers) to adopt complementary specialized behaviors in order to solve.



The Gathering and Collective Construction (GACC) case study presented in
this paper is an initial step towards elucidating that specialization that emerges
during controller evolution, can be used as part of a collective behavior problem
solving process. Experiments elucidate that CONE, comparative to Multi-Agent
ESP, is able to e�ectuate behavioral specialization in a set of ANN controllers,
where such specialization increases collective behavior task performance.

Research Goal: To demonstrate that CONE is appropriate for deriving
behavioral specialization in a team of simulated robots, where such specialization
gives rise to successful collective construction behaviors.

Hypothesis: CONE facilitates emergent behavioral specialization when evolv-
ing a team's collective behavior (in tasks that require specialization), where such
specialization contributes to a higher task performance, comparative to the task
performance of Multi-Agent ESP evolved teams.

GACC Task: This task requires that a team of simulated robots search an
environment and gather a set of atomic objects and then use these objects in the
cooperative construction of a complex object. Task performance is measured as
the number of atomic objects delivered to a home area in a given sequence.

GP 3

GP 1

SP 11

SP 12

SP 13

SP 31

SP 32

SP 33

SP 34

GP 2

SP 21

SP 22

SP 23

ANN 1

ANN 2

ANN 3

Task Environment

GP: Genotype Population
SP: Sub-Population

Fig. 1. CONE / Multi-Agent ESP Example. Three ANN controllers are derived from
three populations and evaluated in a collective behavior task. CONE: Double ended arrows
indicate self regulating recombination occurring between populations. Multi-Agent ESP: Re-
combination only occurs within sub-populations.

2 Neuro-Evolution Methods
2.1 Multi-Agent ESP: Multi-Agent Enforced Sub-Populations
Multi-Agent ESP is the application of the ESP NE method [8] to collective be-
havior tasks. Multi-Agent ESP creates n populations for deriving n ANN con-
trollers. Each population consists of u sub-populations, where individual ANNs
are constructed as in ESP. This process is repeated n times for n ANNs, which



are then collectively evaluated in a task environment. Figure 1 illustrates an
example of Multi-Agent ESP using three populations (controllers). Multi-Agent
ESP is comprehensively described in related work [12].

2.2 CONE: Collective Neuro-Evolution
Due to space constraints, this section only presents an overview of the novel
contributions of Collective Neuro-Evolution (CONE). For a comprehensive de-
scription of CONE, refer to related work [10]. CONE is a cooperative co-evolution
method that adapts a group of ANN controllers. Given n genotype populations,
CONE evolves one controller from each population, where controllers must co-
operate to solve collective behavior tasks. Controllers are collectively evaluated
in a task environment according to how well they solve the given collective be-
havior task. Each controller is a feed-forward ANN with one hidden layer that is
fully connected to the input and output layers. Each hidden layer neuron of each
controller is encoded as one genotype. CONE evolves the connection weights of
hidden layer neurons, and then combines these neurons into complete controllers.
An example of CONE using three controllers (and thus three genotype popula-
tions) is presented in �gure 1. Unlike related methods such as Multi-Agent ESP,
CONE uses genotype and behavioral specialization (GDM and SDM, respec-
tively) di�erence metrics to regulate genotype between and within populations.
CONE is an extension of Multi-Agent ESP that includes the following.
1. GDM: Adaptively regulates genotype recombination between populations,

based on neuron (genotype) connection weight similarities [10].
2. SDM: Adaptively regulates recombination based on behavioral specializa-

tion (CONE uses a specialization metric described in related work [7]) sim-
ilarities exhibited by controllers [10].

3. Controller size adaptation: Adapting the number of hidden layer neurons
in each controller facilitates of the evolution of behavioral specialization by
CONE, via allowing di�erent controllers to evolve to di�erent sizes. That is,
controllers of varying sizes and complexity are often appropriate for solving
a set of sub-tasks of varying complexities [10].

2.3 Common Methods
The following describes the procedure used to construct controllers, and evaluate,
recombine and mutate genotypes in Multi-Agent ESP and CONE.
� Constructing Controllers: Both CONE and Multi-Agent ESP initialize n

populations. Population Pi (i ∈ {1, . . . ,n} contains ui sub-populations. Each
sub-population (Pij) contains m genotypes. Pij contains genotypes encoding
neurons (strings of �oating point values) assigned to position j in the hidden
layer of ANNi. ANNi is derived from Pi, where j ≤ ui.

� Evaluate all Genotypes: Systematically select each genotype g in each
sub-population of each population, and evaluate g in the context of a com-
plete controller. This controller (containing g) is evaluated together with n-1
other controllers. Other controllers are constructed via randomly selecting
a neuron from each sub-population of each of the other populations. The
evaluation results in a �tness being assigned to g.



� Multi-Agent ESP Recombination: After all neurons (genotypes) have
been assigned a �tness [12], each neuron in the elite portion (table 1) is
recombined with another neuron (randomly selected from the elite portion).
O�spring genotypes completely replace each sub-population.

� CONE Recombination: The SDM is applied to each pair of controllers.
For every pair of controllers within a Specialization Distance (SD in table 1)
the populations from which these controllers were derived become candidates
for recombination. The GDM is then applied to each pair of sub-populations
between each pair of behaviorally similar populations (controllers). For each
pair of sub-populations within a given Genetic Distance (GD in table 1)
the elite portions of the sub-populations are recombined (using one-point
crossover [3]). For every population that is not within the SD of another,
or each sub-population that is not within the GD of another (in another
population within the SD),recombination occurs within each sub-population.

� Mutation: After recombination, burst mutation with a Cauchy distribution
[8] is applied to each genotype's gene with a given probability (table 1).

3 GACC Task: Experimental Design
Experiments test 30 robots with N building blocks (n type A, p type B, and q
type C atomic objects) and a home area in a bounded two dimensional continu-
ous environment. The home area (located at the environment's center) is where
gathered objects are delivered and where the complex object is constructed. A
complex object is the structure to be built from N atomic objects. The com-
plex object can only be constructed if robots cooperate place objects of a given
type in a prede�ned sequence. Two, three, and four robots are required to use
type A, B, and C objects to construct the complex object. Experiments mea-
sure the impact of the Multi-Agent ESP or CONE method and an environment
upon the number of atomic objects delivered in the correct sequence to the home
area by the team. The experimental objective test the task performance and the
contribution of specialization to performance in teams evolved by each method.

Team Fitness Evaluation: Team �tness (G) equals the total number of
atomic objects delivered in the correct sequence to the home area. Individual
�tness (gv) equals the number of atomic objects delivered in the correct sequence
by robot η over the course of its lifetime. The goal of the team is to maximize G.
Robots do not maximize G directly, instead each robot η attempts to maximize
its own private �tness function gη, where gη guides controller evolution.

Simulation: Table 1 presents the simulation and NE parameter settings.
These parameter values were determined experimentally. Minor changes to these
values produced similar results for both Multi-Agent ESP and CONE. Each
experiment consists of 250 generations. One generation is a robot team's lifetime.
Each robot lifetime lasts for 10 epochs. One epoch is 3000 simulation iterations,
and represents a task scenario that tests di�erent robot starting positions, and
object locations in an environment. Team task performance is calculated as an
average taken over all epochs of a team's lifetime. The best task performance is
then selected for each run, and an average is calculated over 20 runs.



Table 1. GACC Simulation and Neuro-Evolution Parameters.
Simulation and Neuro-Evolution Parameters

Number of robots / Genotype populations 30
Robot movement range / cost 0.001 / 0.01
Object/Robot/Home area detection sensor range 0.05
Object/Robot/Home area detection sensor accuracy 1.0
Object/Robot/Home area detection sensor cost 0.01
Robot initial energy 1000 units
Initial robot positions Random (Excluding home area)
Environment width / height 1.0
Total number of type A, B, and C objects Variable (table 2)
Atomic Object distribution (Initial positions) Random (Excluding home area)
Generations / Epochs 250 / 10
Iterations per epoch (Robot team lifetime) 3000
Mutation (per gene) probability / Mutation range 0.05 / [-1.0, +1.0]
Genotype / Specialization distance (CONE) [0.0, 1.0]
Population elite portion 50%
Weight (gene) range [-10.0, +10.0]
Genotype length (Number of connection weights) 42
Genotypes per population 500

4 Robot Sensors, Actuators, and Controller
Detection Sensors: Each robot has eight object ([S-0, S-7]), eight robot ([S-8,
S-15]), eight home area ([S-16, S-23]) detection sensors, and three object demand
([S-24, S-26]) sensors (�gure 2). Each of the eight detection sensors covers one
quadrant in a robot's 360 degree sensory Field Of View (FOV). Table 1 presents
sensor range, accuracy, and cost.
� Object Detection Sensors: Object detection sensors need to be explicitly

activated with one of three settings (A, B, C), for detecting type A, B,
and C objects, respectively. This constitutes one action and consumes one
simulation iteration. Sensor q returns the closest object type (for the current
sensor setting) in quadrant q, divided by the squared distance to the robot.

� Robot Detection Sensors: The function of these constantly active sensors
is to prevent collisions, and provide each robot with an indication of the
current state of other robots within this robot's sensory FOV. State refers
to if another robot is carrying an object and the type of the object being
carried. Sensor q returns a value equal to the object type carried by the
closest robot (A:1, B:2, C:3), divided by the squared distance to this robot.

� Home Area Detection Sensors: Sensor q returns a value inversely pro-
portional to the distance to the home area, divided by the squared distance
to this robot. Home area sensors are constantly active.

� Object Demand Sensors: These constantly active sensors indicate the
current demand for object types A, B, C. During the construction process,
the complex object broadcasts a signal that is received by each robot's object
demand sensors, indicating the next required object type.

Movement Actuators: Two wheel motors control each robot's heading at a
constant speed. Movement actuators need to be explicitly activated (motor out-
puts MO-4 and MO-5 in �gure 2). This is one action which takes one simulation



iteration. A robot's heading is determined by normalizing and scaling motor out-
put values (vectors dx and dy) by the maximum distance a robot can traverse
in one iteration (dmax). That is: dx = dmax(o1 - 0.5), and dy = dmax(o2 - 0.5).
Where: o1 and o2 are values of motor outputs MO-4 and MO-5, respectively.

Fig. 2. Robot ANN Controller. For clarity, not all sensory input neurons are illustrated.

Object Gripper: Each robot is equipped with a gripper turret for grip-
ping and transporting objects to the home area. The gripper has three actuator
settings (A, B, C) for gripping and transporting type A, B, and C objects, re-
spectively. The gripper needs to be explicitly activated which takes one iteration.

ANN Controller: Each robot uses a recurrent ANN controller [4], which
fully connects 34 sensory input neurons to 10 hidden layer neurons to eight motor
output neurons (�gure 2). Hidden and output neurons are sigmoidal [9] units.
Sensory input neurons [SI-26, SI-33] accept input as the previous activation state
of the hidden layer. At each iteration, one of seven actions is executed by a robot.
The motor output with the highest value is the action executed.
1. MO-0: Activate all object/obstacle detection sensors with setting A.
2. MO-1: Activate all object/obstacle detection sensors with setting B.
3. MO-2: Activate all object/obstacle detection sensors with setting C.
4. MO-3, MO-4: Calculate direction from motor outputs dx, dy.
5. MO-5: Activate gripper with setting A (�gure 2).
6. MO-6: Activate gripper with setting B (�gure 2).
7. MO-7: Activate gripper with setting C (�gure 2).

5 Results and Discussion
Two experiment sets were run. In experiment set 1, robot teams were evolved
in nine simple environments. Each simple environment contained a distribution
only type A objects, and there was no prede�ned sequence for object delivery
to the home area. In experiment set 2, robot teams were evolved in ninecomplex
environments. Each complex environment contained a distribution of type A,
B, and C objects. Table 2 presents the distribution of each object type for each



Table 2. Distribution of objects for each complex environment. Env: Environment.

Env Object-A
Number

Object-B
Number

Object-C
Number

Complex Object Build Sequence

1 1 2 7 CCACBCBCCC
2 2 4 4 CAACBBBCBC
3 3 6 1 BABAABCBBB
4 16 2 2 BAAAABAAAACAAAAAAAAC
5 4 14 2 BBBABABBBBABABBBCBCB
6 7 2 11 BACACACACACACACCCCCB
7 12 13 5 CBAABCAACAABBBAACABABBBAACBBBB
8 13 14 3 BABABABAAACABABAABBBBCAACABBBB
9 4 15 11 CBBBCBCACBBBCACCACBBBCACBBBBBC

environment, and the required sequence that object types must be delivered
to the home area in order for the complex object to be constructed. These
distributions were derived according to the supposition that if an environment
contains multiple object types, there will be a requirement for controllers to
specialize to di�erent behaviors in order to e�ciently accomplish the task.

Simple Environment Experiment Set: Both Multi-Agent ESP and CONE
evolved teams that yielded comparable performance for all simple environments.
This result was supported by an independent t-test [5] (P values are not pre-
sented due to space constraints). This indicates that environments containing
only one object type are not appropriate for encouraging the evolution of be-
havioral specialization, and that an optimal team behavior in this experiment
set is for all controllers to adopt a non-specialized behavior. That is, in the sim-
ple environment experiment set, there is no requirement for di�erent controllers
to converge to complementary behavioral specializations in order to accomplish
the task. This result supports the hypothesis that CONE only evolves and uses
behavioral specialization in tasks that require specialization.

Complex Environment Experiment Set: Figure 3 presents, for each
complex environment, the average number of atomic objects delivered to the
construction zone in the correct order, by Multi-Agent ESP and CONE evolved
teams. Task performance results presented in �gure 3, indicates that CONE
evolved teams yield a signi�cantly higher average task performance compara-
tive to Multi-Agent ESP evolved teams in six out of the nine environments.
This is supported by an independent t-test. In each complex environment, the
�ttest CONE evolved team consisted of multiple castes (robot sub-groups spe-
cialized to gathering and construction with either type A, B, or C objects). This
result supports the hypothesis that CONE is appropriate for deriving behav-
ioral specialization which leads to a higher collective behavior task performance
(comparative to Multi-Agent ESP evolved teams) is achieved.
6 Conclusions
This paper described the application of the Multi-Agent ESP and CONE neuro-
evolution methods for the purpose of automating controller design in a team
of simulated robots. CONE e�ectively facilitated specialization in the behaviors
of the robots which (comparative to Multi-Agent ESP teams) lead to a higher
task performance in a process in a gathering and collective construction task.
This research suggests that the controller design process used by CONE is able to



Fig. 3. Average Number of Objects Delivered in Correct Order to Home Area in
each Complex Environment by Multi-Agent ESP and CONE evolved teams.

leverage and use emergent specialization in tasks that bene�t from a behaviorally
specialized problem solving approach.

References
1. G. Baldassarre, S. Nol�, and D. Parisi. Evolving mobile robots able to display

collective behavior. Arti�cial Life, 9(1):255�267, 2003.
2. B. Bryant. Evolving Visibly Intelligent Behavior for Embedded Game Agents. PhD

thesis. Computer Science Department. University of Texas, Austin, USA, 2006.
3. A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer-Verlag,

Berlin, Germany, 2003.
4. J. Elman. Finding structure in time. Cognitive Science, 14(1):179 211, 1990.
5. B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge

University Press, Cambridge, 1986.
6. D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to

learning. Evolutionary Intelligence, 1(1):47�62, 2008.
7. J. Gautrais, G. Theraulaz, J. Deneubourg, and C. Anderson. Emergent polyethism

as a consequence of increased colony size in insect societies. Journal of Theoretical
Biology, 215(1):363�373, 2002.

8. F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5(1):317�342, 1997.

9. J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Compu-
tation. Addison-Wesley, Redwood City, 1991.

10. G. Nitschke. Neuro-Evolution for Emergent Specialization in Collective Behavior
Systems. PhD thesis. Computer Science Department, Vrije Universiteit., Amster-
dam, Netherlands, 2009.

11. C. Schultz and L. Parker. Multi-robot Systems: From Swarms to Intelligent Au-
tomata. Kluwer Academic Publishers, Washington DC, USA, 2002.

12. C. Yong and R. Miikkulainen. Coevolution of Role-Based Cooperation in Multi-
Agent Systems. Technical Report AI07-338. Department of Computer Sciences.
The University of Texas, Austin, USA, 2007.


